LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION – **MATHEMATICS**

FOURTH SEMESTER – APRIL 2023

PMT 4501 – FUNCTIONAL ANALYSIS

Date: 29-04-2023 Dept. No. Time: 09:00 AM - 12:00 NOON Max.: 100 Marks

Answer all questions. All questions carry equal marks.

1. (a) If X is a vector space, Y and Z are subspaces of X, prove that for every $x \in X$ there are elements $y \in Y$ and $z \in Z$ such that x = y + z and this representation is unique.

OR

(b) Define Hamel basis. If X is a vector space, prove that all Hamel bases of X have the same cardinal number. (5 marks)

(c) (i) If X is a vector space, Y and Z are subspaces of X and Y is complementary to Z, prove that every element of X/Y contains exactly one element of Z.
(ii) State Zorn's lemma and prove that every vector space X contains a set of linearly independent elements which generates X. (5+10 marks)

OR

(d) (i) Let X be a vector space and Y be a subspace of X. Define deficiency and hyperplane. Is every proper subspace of a vector space contained in a hyperplane?
(ii) Prove that if f ∈ X*, then Z(f) has deficiency 0 or 1 in X. Also prove that, if Z is a subspace

of X of deficiency 0 or 1, then there is an $f \in X^*$ such that Z = Z(f). (3+12 marks)

2. (a) Let *T* be a linear transformation. If *T* is continuous at x = 0, prove that it is continuous everywhere and the continuity is uniform. Also prove that *T* is continuous when bounded.

OR

(b) Let B(X,Y) be the set of all bounded linear transformation of X into Y. Prove that B(X,Y) is a normed vector space which is Banach space if Y is a Banach space. (5 marks)

(c) State and prove Hahn Banach Theorem for a complex normed linear space.

OR

(d) State and prove Banach-Steinhaus theorem.

3. (a) If X is a vector space and X^{**} is a second dual of X, prove that there is a natural isomorphism between certain subspaces X^{**} and X itself.

OR

(b) Explain projection in Banach space with necessary diagram and examples. (5 marks)

(c) State and prove open mapping theorem.

(15 marks)

(15 marks)

a linear transformation of X into Y. Prove that $G(T)$ is \Rightarrow Y is bounded. (5+7+3 marks)
r space over a field F prove that dim $X - \dim X^*$
a space over a field T , prove that $\dim X = \dim X$.
ping theorem and closed graph theorem.
roduct to the norm in Hilbert space. (5 marks) OR
Prove that for any $x \in H$, $\sum_{i=1}^{n} \langle x, x_i \rangle ^2 \le x ^2$.
space if and only if the parallelogram law holds.
OR
ion theorem. (10+5 marks)
djoint if and only if (Tx, x) is real for all x.
e that $\sigma(x)$ the spectrum of x is non-empty.
OR
hat every zero divisor in Banach algebra A is a topological
(5 marks)
and $1-xr$ is regular. Prove that $1-rx$ is regular.
A $x \in A$. Prove that the spectral radius is given by
(3+12 marks)
OR
(15 marks)

\$\$\$\$\$\$\$